
LU-CS-TR:98-204 [LUNFD6/(NFCS-3134)/1–6/(1998)], Lund University, Sweden

NOTES ON SUFFIX SORTING

N. JESPER LARSSON

Abstract. We study the problem of lexicographically sorting the suf-
fixes of a string of symbols. In particular, we analyze the time complexity
of Sadakane’s suffix sorting algorithm [8], showing that this is O(n log n)
in the worst case. We also give a small improvement in the space re-
quirements of this algorithm. We conclude that Sadakane’s algorithm,
which has previously been shown to outperform the closely related al-
gorithm of Manber and Myers [6] in practice, also endures a theoretical
comparison.

1. Introduction

Suffix sorting, the problem of sorting the complete list of indexes of a
string of symbols according to the lexicographical order of the corresponding
suffixes of the string, is currently studied primarily for two applications: The
sorted list, referred to as a suffix array [6] or pat array [5], may be used
for binary search yielding a less space-consuming—while asymptotically also
less time-efficient—alternative to a suffix tree. Lately, suffix sorting has also
become important as a component of the Burrows-Wheeler transform [3],
used for data compression.

Sorting suffixes differs from ordinary string sorting in that the elements to
sort are overlapping strings of length linear in the input size n. This implies
that a comparison-based algorithm which uses Ω(n log n) comparisons may
require Ω(n2 log n) time, and a normal radix sorting algorithm may require
Ω(n2) time.

Linear time for sorting can be achieved by building a suffix tree and
obtaining the sorted order from the leaves. If a suffix-link based suffix-tree
construction algorithm [7, 10] is used, linear construction time is obtained for
non-constant alphabets by hashing, and the edges of the tree subsequently
bucket sorted. Farach’s recursive construction algorithm [4] can be used if
hashing is undesirable.

However, a suffix tree involves considerable overhead, particularly in space
requirements, which commonly makes it too expensive to use for suffix sort-
ing alone.

Manber and Myers [6] presented a radix-sorting based algorithm which
takes O(n log n) time. This is recapitulated in Section 3.

Sadakane [8] showed improved practical performance in relation to sev-
eral natural sorting methods, including the Manber-Myers algorithm and
suffix tree construction. (Note however, that Sadakane’s implementation of
Ukkonen’s suffix tree construction algorithm uses linked list storage of edges
its construction time is thus superlinear unless the alphabet is regarded as
constant.) This algorithm is recapitulated in Section 4.

2 N. JESPER LARSSON

The time complexity of Sadakane’s algorithm has not previously been an-
alyzed. In Section 5 we show that Sadakane’s algorithm can be implemented
to run in O(n log n) worst case time—the same as the Manber-Myers algo-
rithm. Furthermore, in Section 6, we show that the extra auxiliary space
introduced by Sadakane in addition to that of Manber and Myers is unnec-
essary. Hence, Manber-Myers has no theoretical advantage over Sadakane
in the worst case. We argue that Sadakane is likely to perform better for
natural data and should be superior to Manber-Myers for practical purposes.

2. Definitions

We define input as a string X = x0x1 . . . xn of n + 1 symbols, where
xn = $ is a unique symbol whose value we choose to define as the lowest of
all symbols.

The output of suffix sorting is defined as an array I holding the inte-
gers 0, . . . , n − 1 such that for all i ∈ [1, n − 1] the suffix beginning in
position I[i− 1] of X lexicographically precedes that beginning in posi-
tion I[i].

For auxiliary space we use an array V of integers in the range [1, n − 1]
which is used for pointers into I.

3. Manber and Myers

Manber and Myers [6] suggested an algorithm that is in principal an
msd radixsort, but where the number of passes is reduced to at most logn
by taking advantage of the fact that each suffix is a prefix of another one:
the order of the suffixes in the previous sorting pass is used as the keys for
preceding suffixes in the next pass, each time doubling the number of con-
sidered symbols per suffix. This yields an algorithm which takes O(n log n)
time in the worst case. A brief description of the algorithm is as follows:

After filling I with the numbers 0, . . . , n− 1 do the following:
1. Bucket sort I using xi as the key for i. Regard I as partitioned into

as many buckets as there are distinct symbols in X. Set k to 1.
2. I is now sorted on the k first symbols of each suffix. If all suffixes are

in separate buckets, then stop.
3. For i = n − k, . . . , n − 1, move suffix I[i] + k to the beginning of its

bucket and mark the position for bucket splitting.
4. For i = 0, . . . , n − k − 1, move suffix I[i] + k to the beginning of

its bucket. When i crosses a bucket limit, mark accessed buckets for
splitting.

5. Split the buckets thus marked.
6. Double k and go to 2.
Manber and Myers give an implementation that requires, in addition to

storage space for X and I, the integer array V which is used as the inverse
of I, and two boolean arrays of size n for marking buckets (which may be
incorporated as the sign bits of I and V). They also show how the algorithm
can be made to perform in expected linear time under certain assumptions
on the probability distribution of X. However, these assumptions are hardly
realistic when considering natural data, which frequently comprises highly
regular patterns.

NOTES ON SUFFIX SORTING 3

4. Sadakane

With real-life data, most of the elements of I are often sorted in one of the
first few passes of the Manber-Myers algorithm, leaving only a few groups to
be sorted by subsequent passes. Still, all elements of I are traversed during
each pass.

Sadakane [8] improved the practical behavior of this algorithm by re-
placing the radix sorting mechanism with a comparison-based algorithm.
Thereby, the time for each pass becomes dependent only on the number of
remaining unsorted elements. The algorithm is as follows:

1. Sort I using xi as the key for i. Regard I as partitioned into as many
groups as there are distinct symbols in X. Set k to 1.

2. Sort each group of size larger than one with a comparison-based algo-
rithm, using the the first position of the group containing xi+k as the
key for i when i+ k < n, and −1 otherwise.

3. Split groups between non-equal keys.
4. Combine sequences of unit-size groups so that these can be skipped

over in subsequent passes.
5. Double k, and if there are any groups larger than one left, go to 2.

Otherwise stop.
Sadakane’s implementation requires, in addition to storage space for X

and I, the integer array V for holding group positions (∼ inverse of I), one
byte array of size n which holds sizes of groups and single-size groups as well
as flags to determine, for each size cell, whether it applies to a group or a
group sequence. In Section 6 we show that only X, I, and V are necessary,
which eliminates the space overhead of this algorithm compared to Manber
and Myers.

5. Time Complexity

The trivial upper bound on the time complexity of the Sadakane algorithm
is O(n (log n)2). A more detailed complexity analysis has not previously
been presented. We now show that a worst case performance of O(n log n)
is possible.

For the comparison-based subroutine of Sadakane’s algorithm, we use
Quicksort with a tripartite partition, such as the split-end partition of Bent-
ley and McIlroy [1] (as is also suggested by Sadakane). Tripartite denotes
that the partitioning routine splits the subarray assigned to it into three
parts: one with elements smaller than the pivot element, one with elements
equal to the pivot, and one with larger elements. The algorithm recursively
sorts the smaller and larger parts but leaves the equal part, since this is al-
ready in its correct place. For guaranteed worst-case performance, we use the
true median for pivot element. Locating the median, which is done in guar-
anteed linear time, for example using the algorithm of Schönhage, Paterson,
and Pippenger [9], must thus be included in the partitioning routine. (This
is hardly desirable in practice—there exists a range of pivot-choice methods
which balances guaranteed worst-case versus expected performance [1, 2].)

While Sadakane proposes that the initial sorting in step 1 is done by
bucket sorting, we analyze, for simplicity, a variant where the same Quicksort
algorithm is used all through.

4 N. JESPER LARSSON

We view the sorting process as a construction of an implicit ternary tree,
analogous to the search tree discussed by Bentley and Sedgewick [2]: Each
call to the partitioning routine corresponds to a node in the tree, the root
being the the first partitioning of the whole array in step 1. Each node
has three subtrees: a middle subtree which holds the elements equal to the
pivot, and left and right subtrees which hold smaller and larger elements
respectively. All internal nodes have nonempty middle subtrees, while their
left or right subtrees are empty for subarrays with less than three distinct
keys. The tree has n leaves, corresponding to the elements of I (the suffixes),
in sorted order.

Lemma 1. The path length from the root to any leaf is at most 2 log n+ 3.

Proof. Consider first the number of middle-subtree roots on the traversal
from the root to a specific leaf. At the first such node encountered, only the
first symbol of each suffix is considered by the sorting. Then, at each subse-
quent middle-subtree root encountered, the number of symbols considered
by the sorting is twice as large as at the previous one. Consequently, the
full length of the suffix is considered after encountering at most logn + 1
middle-subtree roots, at which time sorting is done.

Now consider the left- and right-subtree roots on a similar path. For each
such node encountered, the number of leaves in its subtree is at most half
that number in the previous one. Thus, we are down to a single leaf after
encountering at most logn+ 1 left- or right-subtree roots.

Summing the root and the maximum number of middle-, left-, and right-
subtree roots on a path, we have a path length of at most 2 log n+ 3.

Lemma 2. Partitioning operations corresponding to all the nodes of any
given depth of the tree takes at most O(n) time.

Proof. Partitioning a subarray takes time linear in its size. The initial array,
whose partitioning corresponds to the root, has size n, and since no overlap-
ping subarrays are ever assigned to different subtrees of any node, the total
size for of all subarrays at any given depth is at most n. The total time for
partitioning at this depth is thus O(n).

Theorem 1. Suffix sorting by Sadakane’s algorithm with a tripartite Quick-
sort as a subroutine can be done in O(n log n) worst-case time.

Proof. Partitioning asymptotically dominates sorting time; splitting and
combining groups is done in linear time on subarrays which are already
sorted.

From Lemma 2, the total partitioning cost is at most O(n) times the
height of the tree. Lemma 1 implies that the height of the tree is O(log n)
and consequently the total partitioning time is O(n log n).

6. Getting Rid of the Size Array

In Sadakane’s implementation V [i] points to the leftmost position of the
group containing suffix i in I. To find the end of each group or sequence of
single size groups, an additional array is used to hold sizes.

To reduce auxiliary space to the V array only, we incorporate the group
sizes into V by letting V [i] point to the last element of the group containing

NOTES ON SUFFIX SORTING 5

suffix i. Sequences of single-size groups are handled specially: if i is the first,
and j the last suffix in a sequence of single-size groups in I, we exchange
V [i] and V [j].

Now, each sorting pass proceeds as follows: We scan I left to right. Let
i denote the next unexplored position in this scan, and set j to V [I[i]].
If V [I[j]] = j we call the sorting subroutine for the subarray I[i . . . j].
(Otherwise we have encountered a sequence of single-sized groups and do
nothing.) We continue by setting i to j + 1, stopping when i = n. Group
splitting and combining is similarly straightforward.

Wit this scheme, the keys for the sorting routine have to be picked some-
what more carefully: The elements of V are used as keys, preserving order
(it does not matter whether the first or last position of a group is used as its
key), except for the first and last suffix of a sequence of single-size groups,
whose cells in V are exchanged. Therefore, when we would use V [i] as a
key, we instead use V [I[V [i]]], which reverses this exchange when needed
and has no effect otherwise.

7. Conclusion and Future Research

When performing suffix sorting on real-life data, particularly when this
is a component of data compression—which is an important application—,
a large proportion of the suffixes become sorted by the first few passes of
suffix sorting algorithms such as the Manber-Myers or Sadakane algorithms,
while, due to repetitions, a few suffixes require several passes for their order
to be resolved. Therefore, it is desirable to limit the work in subsequent
passes by treating only the few unsorted suffixes in each pass. This is clearly
demonstrated by Sadakane’s experiments [8].

Our analysis shows that with a carefully chosen comparison-based subrou-
tine, Sadakane’s algorithm is not, as it might seem at first glance, asymptot-
ically inferior to that of Manber and Myers. Furthermore, we have shown
that it does not require any additional space. This, in combination with
its demonstrated superior practical performance, leads us to conclude that
Sadakane’s algorithm is generally the better choice for practical applications.

We note however, that resorting to a comparison-based algorithm is not
the only possible way to exploit the fact that the number of suffixes decreases
rapidly in the first passes of the sorting. In future research, we will explore
the possibility of radix sorting on fewer bits at a time (i.e. less than the
dlog ne bits implicit in the Manber-Myers algorithm) to obtain sublinear
time for each sorting pass while increasing the number of passes.

References

1. Jon L. Bentley and M. Douglas McIlroy, Engineering a sort function, Software—
Practice and Experience 23 (1993), no. 11, 1249–1265.

2. Jon L. Bentley and Robert Sedgewick, Fast algorithms for sorting and searching
strings, Proceedings of the eighth Annual acm–siam Symposium on Discrete Algo-
rithms, January 1997, pp. 360–369.

3. Michael Burrows and David J. Wheeler, A block-sorting lossless data compression algo-
rithm, Research Report. 124, Digital Systems Research Center, Palo Alto, California,
May 1994.

6 N. JESPER LARSSON

4. Martin Farach, Optimal suffix tree construction with large alphabets, Proceedings of
the 38th Annual ieee Symposium on Foundations of Computer Science, October 1997,
pp. 137–143.

5. Gaston H. Gonnet and Ricardo A. Baeza-Yates, Handbook of algorithms and data
structures, Addison-Wesley, 1991, isbn 0-201-41607-7.

6. Udi Manber and Gene Myers, Suffix arrays: A new method for on-line string searches,
Siam Journal on Computing 22 (1993), no. 5, 935–948.

7. Edward M. McCreight, A space-economical suffix tree construction algorithm, Journal
of the acm 23 (1976), no. 2, 262–272.

8. Kunihiko Sadakane, A fast algorithm for making suffix arrays and for Burrows-
Wheeler transformation, Proceedings of the ieee Data Compression Conference,
March–April 1998, pp. 129–138.

9. A. Schönhage, M. Paterson, and N. Pippenger, Finding the median, Journal of Com-
puter and System Sciences 13 (1976), no. 2, 184–199.

10. Esko Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995), no. 3,
249–260.

