
LU-CS-TR:99-214 [LUNFD6/(NFCS-3140)/1–20/(1999)],
Dept of Computer Science, Lund University, Sweden

FASTER SUFFIX SORTING

N. JESPER LARSSON∗ AND KUNIHIKO SADAKANE†

Abstract. We propose a fast and memory efficient algorithm for lexico-
graphically sorting the suffixes of a string, a problem that has important
applications in data compression as well as string matching.

Our algorithm eliminates much of the overhead of previous specialized
approaches while maintaining their robustness for all kinds of input. For
input size n, our algorithm operates in only two integer arrays of size n,
and has worst case time complexity O(n log n).

We demonstrate experimentally that our algorithm has favourable
performance compared to other approaches, and argue that our algo-
rithm is the prime choice for general suffix sorting.

1. Introduction

Suffix sorting is the problem of lexicographically ordering all the suf-
fixes of a string. The suffixes are represented by integers denoting their
starting positions.

This has at least two important applications. One is construction of a
suffix array [11] (also known as PAT array [5]), a data structure that supports
some of the operations of a suffix tree [17], generally slower than the suffix
tree but requiring less space. When additional space is allocated to supply
a bucket array or a longest common prefix array, the time complexities of
basic operations closely approach those of the suffix tree.

Another application is in data compression. The Burrows-Wheeler trans-
form [4] is a process that has the capability of concentrating repetitions in
a string, which facilitates data compression. Even in a rudimentary form,
Burrows-Wheeler compression matches substantially more complex mod-
elling schemes in compression performance, and with advances in research
as well as practical implementations [1, 14, 16], its importance is growing
rapidly. Suffix sorting is a computational bottleneck in the Burrows-Wheeler
transform, and an efficient sorting method is crucial for any implementation
of this compression scheme. We refer to the cited material for details.

Suffix sorting differs from ordinary string sorting in that the elements to
sort are overlapping strings, whose lengths are linear in the input size n. This
implies that a comparison-based algorithm, which requires Ω(n log n) com-
parisons, may take Ω(n2 log n) time for suffix sorting, and analogously a
normal radix sorting algorithm may take Ω(n2) time. Fortunately, these
bounds can be surpassed with specialized methods.

Linear time suffix sorting can be achieved by building a suffix tree and
obtaining the sorted order from its leaves. However, a suffix tree involves
overhead, particularly in space requirements, which commonly makes it too
expensive to use for suffix sorting alone.

∗ Dept of Computer Science, Lund University, Sweden (jesper@cs.lth.se).
† Dept of Information Science, University of Tokyo, Japan (sada@is.s.u-tokyo.ac.jp).

2 N. JESPER LARSSON AND KUNIHIKO SADAKANE

Manber and Myers [11] presented an elegant radix-sorting based algorithm
which takes at most O(n log n) time. They also suggested augmentations
that allowed string matching operations in time bounds close to those of the
suffix tree, at the cost of additional space.

Section 2 recapitulates this and other approaches connected with our al-
gorithm. Section 3 presents the basic version of our algorithm. (A prelim-
inary version of this algorithm and some of its refinements has previously
been presented by Sadakane [13].) Section 4 analyzes time complexity. Sec-
tion 5 present various refinement techniques. Section 6 presents a practical
implementation that includes the refinements, and results of an experimen-
tal comparison with other suffix sorting implementations. Finally, Section 7
concludes by recapitulating our findings.

Problem Definition. We consider a string X = x0x1 . . . xn of n + 1 sym-
bols, where the first n symbols comprise the actual input string and xn = $ is
a unique sentinel symbol. We choose to regard $, which may or may not be
represented as an actual symbol in the implementation, as having a value
below all other symbols. By Si, for 0 ≤ i ≤ n, we denote the suffix of X
beginning in position i. Thus, S0 = X, and Sn = $ is the first suffix in
lexicographic suffix order.

The output of suffix sorting is a permutation of the Si, contained in an
integer array I. Throughout the algorithm, I holds all integers in the range
[0, n], where i represents Si. Ultimately, these numbers are placed in or-
der corresponding to lexicographic suffix order, i.e., SI[i−1] lexicographi-
cally precedes SI[i] for all i ∈ [1, n]. We refer to this final content of I as
the sorted suffix array.

Thus, suffix sorting in more practical terms means sorting the integer
array I according to the corresponding suffixes. We interchangeably refer
to the integers in I and the suffixes they represent; i.e., suffix i, where i
is an integer, denotes Si.

Some previous work on suffix sorting also treat calculation of longest com-
mon prefix (lcp) information, within the time bounds of the algorithm. We
conjecture that this can be efficiently computed as a byproduct of our al-
gorithm as well, but do not consider it further, for the following reasons:
The lcp array, as well as other augmentations that allow faster access in
the suffix array, increase space requirements to the extent that a compact
suffix tree implementation, such as those described by Kurtz [10], would
often be a better alternative. Furthermore, lcp information is unnecessary
for many applications. It is, for example, of no use in implementing the
Burrows-Wheeler transform. Lastly, a linear time lcp calculation algorithm
is given by Kasai, Arimura, and Arikawa [8], surpassing our sorting bound
as well as previous ones.

Alphabet Size Considerations. Much confusion concerning the time
complexity of suffix sorting originates from insufficient consideration of the
input alphabet size.

It is well known that general sorting with only pairwise comparisons
has time complexity Θ(n log n), matching the worst case complexity of the
Manber-Myers algorithm as well as ours. However, when the input consists
of integers in a restricted range, radix techniques may be used. Indeed, the

FASTER SUFFIX SORTING 3

Manber-Myers algorithm is radix based, and requires that the input con-
sists of integers bounded by n. To lift this restriction, the algorithm must
be preceded by a transform comprising symbol sorting. Our algorithm does
not require this augmentation.

Assuming that either the input alphabet size is constant, or that constant-
time retrieval is possible through hashing, makes linear-time suffix sorting
possible. However, in all work known to us, this is accomplished only by
taking the detour over suffix tree construction.

2. Background

This section presents the background material for our algorithm as well
as previous work and alternative approaches to suffix sorting.

2.1. Suffix Sorting in Logarithmic Number of Passes. One obvious
idea for a suffix sorting algorithm is to start by sorting according to only the
first symbol of each suffix, then successively refining the order by expanding
the considered part of each suffix. If one additional symbol per suffix is
considered in each pass, the number of passes required in the worst case
is Ω(n). However, fewer passes are needed if we exploit the fact that each
proper suffix of the whole string is also a suffix of another suffix.

The key for reducing the number of passes is a doubling technique, orig-
inating from Karp, Miller, and Rosenberg [7], which allows the positions
of the suffixes after each sorting pass to be used as the sorting keys for
preceding suffixes in the next pass.

Define the h-order of the suffixes as their order when sorting lexicograph-
ically, considering only the initial h symbols of each suffix. The h-order is
not necessarily unique when h < n. Now consider the following observation:

Observation 1 (Manber and Myers). Sorting the suffixes using, for each
suffix Si, the position in the h-order of Si as its primary key, and the position
of Si + h in the same order as its secondary key, yields the 2h-order.

To use this observation, we first sort the suffixes according the first symbol
of each suffix, using the actual contents of the input, i.e., xi is the sorting
key for suffix i. This yields the 1-order. Then, in pass j, for j ≥ 1, we use
the position that suffix i + 2j−1 obtained in pass j − 1 (where pass 0 refers
to the initial sorting step) as the sorting key for suffix i. This doubles the
number of considered symbols per suffix in each pass, and only O(log n)
passes in total are needed.

Manber and Myers [11] use this observation to obtain an O(n log n) time
algorithm through bucket sorting in each pass. An auxiliary integer array,
which we denote V , is employed to maintain constant-time access to the
positions of the suffixes in I.

The main implementation given by Manber and Myers uses, in addition
to storage space for X, I, and V , an integer array with n elements, to
store counts. However, the authors sketch a method for storing counts in
temporary positions in V with maintained asymptotic complexity.

A substantially cleaner solution with reduced constant factors has been
presented as source code by McIlroy [12]. Some properties of McIlroy’s im-
plementation are discussed in Section 5.3.

4 N. JESPER LARSSON AND KUNIHIKO SADAKANE

2.2. Ternary-Split Quicksort. The well known Quicksort algorithm [6]
recursively partitions an array into two parts, one with smaller elements
than a pivot element and one with larger elements. Then the parts are
processed recursively until the whole array is sorted.

Where traditional Quicksort partitioning mixes the elements equal to the
pivot into – depending on the implementation – one or both of the parts,
a ternary-split partition generates three parts: one with elements smaller
than the pivot, one with elements equal to the pivot, and one with larger
elements. The smaller and larger parts are then processed recursively while
the equal part is left as is, since its elements are already correctly placed.

This approach is analyzed and implemented by Bentley and McIlroy [2].
The comparison-based sorting subroutine used in our algorithm is directly
derived from their implementation.

2.3. Ternary String-Sorting and Trees. Bentley and Sedgewick [3] em-
ploy a ternary-split Quicksort to the problem of sorting an array of strings,
which results in the following algorithm: Start by partitioning the whole
array based on the first symbol of each string. Then process the smaller
and larger parts recursively in exactly the same manner as the whole ar-
ray. The equal part is also sorted recursively, but with partitioning starting
from the second symbol of each string. Continue this process recursively:
each time an equal part is being processed, move the position considered
in each string forward by one symbol.

The result is a fast string sorting algorithm which, although it is not
specialized for suffix sorting, has been used successfully for suffix sorting in
the widely spread Burrows-Wheeler implementation Bzip2 [16].

Our proposed algorithm does not explicitly make use of this string sorting
method, but the techniques are related. This is apparent from our time
complexity analysis in Section 4: Bentley and Sedgewick consider the implicit
ternary tree that emerges from their algorithm when regarding each call to
the partitioning routine as a node with three outgoing edges, one for each
part of the splitting. We use this tree as a tool for our analysis.

3. A Faster Suffix Sort

Usually in suffix sorting, the the final positions of most of the suffixes are
determined by only the first few symbols of each suffix. This is true for com-
mon real-life data (see Section 6.2) as well as random strings. As a result,
a specialized suffix sorting method, such as the Manber-Myers algorithm,
is often outperformed in practice by an ad hoc string sorting method, op-
timized for sorting short strings.

To improve the Manber-Myers algorithm, we need to remove unnecessary
scanning and idle reorganizing of already sorted suffixes. Still, we wish to
maintain the robust worst case behaviour for repetitive strings which do also
occur in practice. Furthermore, we do not want to increase the amount of
auxiliary space, which would be necessary if a suffix tree was used.

We now present a suffix sorting algorithm that accomplishes this. The var-
ious techniques explained in Section 2 are components of our algorithm. This
section describes a basic version of the algorithm. In Section 5, we describe

FASTER SUFFIX SORTING 5

refinements to the algorithm that improve both running time and storage
space. (Sadakane [13] presented a preliminary version of this algorithm.)

Our algorithm inherits the use of Observation 1 to double the number of
considered symbols over a number of sorting passes, as well as the array V
to gain constant time access to suffix positions, from Manber and Myers
(see Section 2.1). To refrain from scanning the whole array in each pass,
we mark which sections of the suffix array are already finished and skip
over them when sorting. We use ternary-split Quicksort (Section 2.2) as
our sorting subroutine.

The following concepts enable us to express the rules of individual sorting
passes:

Definition 2. The following applies when I is in h-order:
• A maximal sequence of adjacent suffixes in I which have the same

initial h symbols is a group.
• A group containing at least two suffixes is an unsorted group.
• A group containing only one suffix one is a sorted group.
• A maximal sequence of adjacent sorted groups is a combined sorted

group.

We number the groups so that the numbers reflect the order in which
the groups appear in I. This is necessary to allow groups to be used as
sorting keys. It is convenient to define the number of a group I[f. . . g] as
one of the numbers f. . . g. For reasons that become apparent in Section 5,
we choose the following group numbering:

Definition 3. The group number of a group that occupies the subarray
I[f. . . g] is g.

During sorting, the array V stores group numbers. V [i] = g reflects that
suffix i is currently in group number g.

Furthermore, we employ a conceptual array L that holds the lengths of
unsorted groups and combined sorted groups in positions corresponding to
their leftmost elements. To distinguish between these, we store positive num-
bers for unsorted groups and negative numbers (the negated length) for
combined sorted. Thus, if the subarray I[f. . . g] is an unsorted group, we
store g−f +1 in L[f]; if it is a combined sorted group, we store −(g−f +1)
instead. In Section 5.1, we show how the relevant information of L can be
superimposed on I without extra storage space.

Note the difference in treatment of sorted groups between V and L: in L,
we store lengths of combined sorted groups; in V , we store group numbers
for unit length sorted groups.

The first step of the algorithm places the suffixes – represented as numbers
0 through n – into I, sorted according to the first symbol of each suffix. This
step consists of integer sorting, where the keys are drawn from the input
alphabet. After this step, I is in 1-order. We initialize V and L accordingly.

Then a number passes for further sorting follow. At the beginning of the
jth such pass, I is in h-order, where h = 2j−1. Note the following:

Observation 4. When I is in h-order, each suffix in a sorted group is
uniquely distinguished from all other suffixes by its first h symbols.

6 N. JESPER LARSSON AND KUNIHIKO SADAKANE

1. Place the suffixes, represented by the numbers 0, . . . , n, in I. Sort the
suffixes using xi as the key for i. Set h to 1.

2. For each i ∈ [0, n], set V [i] to the group number of suffix i, i.e., the
last position in I that holds a suffix with the same initial symbol as
suffix i.

3. For each unsorted group or combined sorted group occupying the sub-
array I[f. . . g], set L[f] to its length or negated length respectively

4. Process each unsorted group in I with ternary-split Quicksort, using
V [i + h] as the key for suffix i.

5. Mark splitting positions between non-equal keys in the unsorted
groups.

6. Double h. Create new groups by splitting at the marked positions,
updating V and L accordingly.

7. If I consists of a single combined sorted group, then stop. Otherwise,
go to 4.

Figure 1. The basic version of our proposed algorithm.

This implies that all suffixes in sorted groups are already in their final
location, and only unsorted groups need to be rearranged.

We sort the unsorted groups using the group number of suffix i + h as
the key for suffix i, which, by Observation 1, places I in 2h-order. We then
split groups between suffixes with non-equal keys, updating V and L. When
setting the lengths in L, we combine adjacent groups so that they can be
efficiently skipped over in subsequent passes.

Figure 1 shows the basic algorithm. Its time complexity is analyzed in
Section 4. The key to the good performance of this algorithm is the utiliza-
tion of Observation 4 in Step 4: the group lengths stored in L allow us to skip
over sorted groups completely while we continue to process unsorted groups.
For marking of groups in Step 5, we can use the sign bits of I. With the
refinement shown in Section 5.2, the necessity of this marking disappears.

Note that Step 4 does not check that i + h is in the legal range – at
most n – when referring to V [i + h]. This is not necessary, because of the
unique $ symbol that terminates X: All suffixes n−h+1, . . . , n have length
at most h, and the $ symbol is therefore included in the considered part of
these suffixes, which implies that their positions in the sorted suffix array
must already have been uniquely determined. They are therefore all in sorted
groups, and we never attempt to access their sorting keys.

Figure 2 shows a run of the algorithm with the string ‘tobeornottobe’ as
input. The top section of the figure shows X, the input with the unique
$ symbol attached to the end. The second section shows the result of sorting
the suffixes according to their first symbols. Negative numbers in L[0], L[5]
and L[10] denote that suffixes 0, 5 and 10 are already sorted.

The next, single-line, section of the figure shows the keys used for the h =
1 sorting pass. In this pass, the sorting key of suffix i is V [I[i] + 1]. Suffixes
in groups 2 (I[1 . . . 2]), 4 (I[3 . . . 4]), 9 (I[6 . . . 9]) and 13 (I[11 . . . 13]) are
sorted separately, according to these keys. The result, shown in the next
section of the figure, is that suffixes are sorted according to their first two

FASTER SUFFIX SORTING 7

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13
h xi t o b e o r n o t t o b e $

I[i] 13 2 11 3 12 6 1 4 7 10 5 0 8 9
V [I[i]] 0 2 2 4 4 5 9 9 9 9 10 13 13 13
L[i] −1 2 2 −1 4 −1 3

1 V [I[i] + h] 4 4 7 0 2 10 12 2 7 12 7

I[i] 2 11 12 3 1 10 4 7 0 9 8
V [I[i]] 2 2 3 4 7 7 8 9 12 12 13
L[i] −1 2 −3 2 −3 2 −1

2 V [I[i] + h] 8 0 4 3 2 2

I[i] 11 2 10 1 0 9
V [I[i]] 1 2 6 7 12 12
L[i] −11 2 −1

4 V [I[i] + h] 8 0

I[i] 9 0
V [I[i]] 11 12
L[i] −14

I[i] 13 11 2 12 3 6 10 1 4 7 5 9 0 8

Figure 2. Example run of the basic algorithm with the input string
‘tobeornottobe’. Time flow is from the top down in the table. Sections
with h values show the keys used when sorting the entries that have equal
V [I[i] + h] values. Other sections show the parts of the contents of X , I,
V , and L that are accessed at each sorting stage.

symbols. Groups have been split by updating L[i] and V [i] for i ranging
over the just sorted groups.

Analogously, the next sorting pass, for h = 2, processes still unsorted
groups (2, 7, and 12) by sorting according to V [I[i] + 2], and obtain the
suffix order according to the first four symbols of each suffix. Finally, the
single remaining unsorted group (12) is sorted according to V [I[i] + 4],
again doubling the number of considered symbols. This concludes the suf-
fix sorting, since the longest repeated string in the input is shorter than
eight symbols, and leaves I holding the sorted suffix array as shown at
the bottom of the figure.

4. Time Complexity

Consider the algorithm in Figure 1. The time for the first sorting step is
between O(n) and O(n log n) depending on the sorting method used. Ini-
tialization of V and L in Step 2 and Step 3 are both performed in linear
time in a left-to-right sweep. The asymptotically dominant part of the algo-
rithm is thus the loop comprising Step 4 through Step 7, which is performed
up to log n times. Clearly, the time for each run through this loop can be
bounded by n log n – the time to sort all of I with a comparison-based sort-
ing method – yielding an upper bound of O(n(log n)2) for the total time

8 N. JESPER LARSSON AND KUNIHIKO SADAKANE

complexity. However, the more detailed complexity analysis below shows
that a worst case bound of O(n log n) is possible.

Our sorting subroutine is Quicksort with a ternary-split partition, such as
the split-end partition of Bentley and McIlroy (see Section 2.2). We assume
that the true median is chosen as pivot element to guarantee that the array
is partitioned as evenly as possible. This requires that the median is located
in linear time, for example using the algorithm of Schönhage, Paterson, and
Pippenger [15], as part of the partitioning routine. In practice, this is rarely
desirable, due to increased constant factors, and hardly necessary. There
exists a range of pivot-choice methods which balances guaranteed worst-
case versus expected performance [2].

For simplicity, we assume in the following analysis that the same method
is used for the initial sorting in Step 1 as in later passes. Employing a
different sorting algorithm for initial sorting (considered in Section 5) may
improve the practical behaviour of the algorithm, but does not influence the
asymptotic worst case time complexity.

We view the sorting process as a construction of an implicit ternary tree,
analogous to the search tree discussed by Bentley and Sedgewick [3]. In this
tree, each call to the partitioning routine corresponds to a node in the tree.
The first partitioning of the whole array in Step 1 corresponds to the root of
the tree. Each node has three subtrees: a middle subtree which corresponds
to the subarray containing elements equal to the pivot after the partitioning,
and left and right subtrees corresponding to the subarrays holding smaller
and larger elements respectively. All internal nodes have nonempty middle
subtrees, while their left or right subtrees are empty for subarrays with
less than three distinct keys. The tree has n leaves, corresponding to all
the elements in sorted order. Figure 3 shows an example ternary tree that
corresponds to the same input and sorting process as Figure 2.

The following lemma bounds the height of the ternary tree:

Lemma 5. The length of a path from the root to any leaf in the ternary
tree is at most 2 log n + 3.

Proof. Consider first the number of middle-subtree roots on a walk from the
root to a leaf in the tree. At the first such node encountered, only the first
symbol of each suffix is considered by the sorting. Then, at each subsequent
middle-subtree root encountered, the number of symbols considered by the
sorting is twice as large as at the previous one. Consequently, the full length
of any suffix is considered after encountering at most log n+1 middle-subtree
roots, at which time sorting is done.

Now consider the left- and right-subtree roots. For each such node encoun-
tered on a walk from the root to a leaf, the number of leaves in its subtree
is at most half compared to the previous one, since partitioning is done as
evenly as possible. Thus, we are down to a single leaf after encountering at
most log n + 1 left- or right-subtree roots.

Summing the root and the maximum number of middle-, left-, and right-
subtree roots on a path, we have a path length of at most 2 log n + 3.

We now consider the amount of work that corresponds to each depth
level of the ternary tree.

FASTER SUFFIX SORTING 9

0, . . . , 13

2, 3, 6, 11, 12, 13

< ‘o’

13

< ‘b’

h =
1

h =
2

2, 11

= ‘b’

2, 11

= 4

11

= 0

2

> 0

3, 6, 12

> ‘b’

3, 12

= ‘e’

12

= 0

3

> 0

6

> ‘e’

1, 4, 7, 10

= ‘o’

1, 10

= 2

10

= 3

1

> 3

4, 7

> 2

4

= 8

7

> 8

h =
4

0, 5, 8, 9

> ‘o’

5

< ‘t’

0, 8, 9

= ‘t’

0, 9

= 7

0, 9

= 2

9

= 0

0

> 0

8

> 7

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13
xi t o b e o r n o t t o b e $

Figure 3. An implicit ternary tree that emerges from sorting with the
input string ‘tobeornottobe’. The sorting process corresponds to that of
Figure 2. The suffixes processed in each partition operation are listed in-
side the node corresponding to that operation. The outgoing edges of each
partitioning node are labeled with relation operations and pivot keys that
determine the results of partitioning. (Different choices of pivot elements
lead to different trees.) Dotted lines mark transitions between sorting passes
of the algorithm.

Lemma 6. Partitioning operations corresponding to all the nodes of any
given depth of the tree takes at most O(n) time.

Proof. Partitioning a subarray takes time linear in its size. The initial array,
whose partitioning corresponds to the root, has n+1 elements, and since no
overlapping subarrays are ever assigned to different subtrees of any node, the
total number of elements in all subarrays at any given depth is at most n+1.
The total time for partitioning at this depth is thus O(n).

We can now state the following tight bound:

Theorem 7. Suffix sorting with the algorithm in Figure 1 can be done in
O(n log n) worst case time.

Proof. Partitioning asymptotically dominates sorting time; splitting and
combining groups is done in linear time on subarrays which are already
sorted.

10 N. JESPER LARSSON AND KUNIHIKO SADAKANE

From Lemma 6, the total partitioning cost is at most O(n) times the
height of the ternary tree. Lemma 5 implies that the height of the tree
is O(log n), and consequently the total partitioning time is O(n log n).

5. Algorithm Refinements

This section lists a number of refinements that reduce the time and space
requirements of our algorithm. These are incorporated in the practical im-
plementation described in Section 6.1.

5.1. Eliminating the Length Array. The only use of the information
stored in the array L is to find right endpoints of groups in the scanning-
and-sorting phase of the algorithm (Step 4 in Figure 1). For combined sorted
groups, this is to be able to skip over them in constant time, and for un-
sorted groups to use the endpoint as a parameter to the sorting subroutine.
However, the endpoint of unsorted groups is directly known without using
L, since it is equal to the group number according to Definition 3, and can
be directly obtained from V .

Consequently, we need only find alternative storage for the lengths of com-
bined sorted groups to be able to get rid of the L array. For this, note that
once a suffix has been included in a combined sorted group, the position in I
where it resides is never accessed again. Therefore, we can reuse the subar-
rays of I that span sorted groups for other purposes, without compromising
the correctness of the algorithm.

Of course, overwriting parts of I with other information means that I does
not hold the desired output, the sorted suffix array, when the algorithm
terminates. However, the information needed to quickly reconstruct this
is present in V . When the algorithm finishes, all parts of the suffix array
are sorted groups, and since V holds group numbers of single-length sorted
groups it is in fact at this point the inverse permutation of the sorted suf-
fix array. Hence, setting I[V [i]] to i for all i ∈ [0, n] reconstructs the
sorted suffix array in I.

This allows us to use the first position of each combined sorting groups
for storing its negated length. When we probe the beginning of the next
group in the left to right scanning-and-sorting step, we check the sign of
the number I[i] in this position. If it is negative, I[i . . . i− I[i] + 1] is a
combined sorted group; otherwise I[i . . . V [I[i]]] is an unsorted group.

5.2. Combining Sorting and Updating. After sorting, the algorithm in
Figure 1 scans the processed parts twice, in order to update the information
in V and L. This is true both for the initial sorting step and for each run
through the loop in Step 4 through Step 7. We now show how this additional
scanning can be eliminated.

First, note that concatenating adjacent sorted groups, to obtain the max-
imal combined sorted, groups can be delayed and performed as part of
the scanning-and-sorting (Step 4) of the following iteration. This change
is straightforward.

Furthermore, all other updating of group numbers and lengths can be in-
corporated in the sorting subroutine. This change requires some more consid-
eration, since changing group numbers of some suffixes affects sorting keys of

FASTER SUFFIX SORTING 11

other suffixes. Therefore, updating group numbers before all unsorted groups
have been processed must be done in such an order that no group is ever,
not even temporarily, given a lower group number than a group residing in
a higher part of I. With the ternary-split sorting routine we use, this poses
no difficulty. We give the sorting routine the following schedule:

1. Partition the subarray in three parts: smaller than, equal to, and larger
than the pivot.

2. Recursively sort the smaller part.
3. Update group number and size of the equal part, which becomes a

group of its own.
4. Recursively sort the larger part.

Since the group numbers stored in V never increase – splitting groups
always only involves decreasing group numbers – this keeps the sorting
keys consistent.

This change may still influence the sorting process, but only in a posi-
tive direction: Some elements may now be directly sorted according to the
keys they would otherwise achieve after the current sorting pass, and this
effect may propagate through several groups. Although this does not effect
the worst case time complexity, it causes a nontrivial improvement in time
complexity for some input distributions.

5.3. Input Transformation. If we assume that the input alphabet is small
enough for a symbol to be represented as a nonnegative integer (which is
invalid for only a few, less than practical, machine models), we can start
by transferring the contents of X to V , and perform the initial sorting in
Step 1 using V [i] as the key for suffix i. This has the following potential
advantages, which to some degree all originate from McIlroy [12]:

• By setting h = 0, we can use the exact same sorting subroutine for
initial sorting as for subsequent sorting passes.

• Since we no longer access X, we do not need to keep it in primary stor-
age during sorting. Indeed, if we do not wish to retain X, we can overlay
V on X, eliminating the memory usage for this array completely.

• When transferring symbols from X to V , the alphabet can undergo any
transformation as long as the order between the suffixes is maintained.

McIlroy’s implementation requires an alphabet transformation that rep-
resents the unique $ symbol with zero, and maps the original symbols to
integers in the range [1, k), where k − 1 is the number of distinct symbols
in the input. This transformed alphabet facilitates bucket sorting, which
is essential in McIlroy’s implementation, since it is based on the Manber-
Myers algorithm.

We now develop alphabet transforms that can benefit to our algorithm
even though we do not use bucket sorting (except possibly for initial sort-
ing, see Section 5.4). We assume for the remainder of this section that the
input consists of integers in the range [l, k) for some k and l, not count-
ing the $ symbol.

The possibility to introduce an explicit representation of the $ symbol is
a small but convenient effect of alphabet transformation. The simplest way
to achieve this is to set V [i] to xi − l + 1 for all i ∈ [0, n) when transferring

12 N. JESPER LARSSON AND KUNIHIKO SADAKANE

from X, and set V [n] to zero. Now, the rest of the algorithm does not have
to pay any attention to range or alphabet limits.

A transform with direct impact on time complexity, similar to a variation
described by Manber and Myers [11, page 944], is possible when the input
range is small enough for several symbols to be aggregated into one integer.
Let K denote k − l + 1, the size of the original alphabet including $, and
let r be the largest integer such that Kr − 1 can be held in one machine
word. Now, for all i ∈ [0, n], set

V [i] :=
r∑

j=1

xi+j−1 ·Kr−j

where we define xi = 0 for i ≥ n.
This has the effect that initial sorting, where V [i] is used as the key

for suffix i, concerns not only the first symbol of each suffix, but the first
r symbols. Therefore, subsequent sorting passes can start with h set to r
instead of 1, and the number of sorting passes is reduced.

The transform can be computed in linear time independent of r through
the alternative form

V [i + 1] := (V [i] mod Kr−1) ·K + xi+r

for i > 0. If K is rounded up to the next power of two, the multiplication
and modulo operation can be replaced by faster shift and and operations.

Since r is highly dependent on K and thereby on k and l – the limits of the
input alphabet range – it can be fruitful to tighten these limits as much as
possible before computing the transform. Checking the minimum and max-
imum symbol values that actually occur in the input and adjusting k and l
accordingly is a simple task that commonly yields a noticeable improvement.

A further improvement can be gained in many cases by compacting the
alphabet prior to the symbol aggregating transform. Denote the set of sym-
bols that occur in the input Σ = {s1, . . . , s|Σ|}, where si < sj if and only
if i < j. Replacing each symbol si in the input with its ordinal number i
allows us to set l = 0 and k = |Σ|. If only a small subset of the allowed
input alphabet is used, this can result in a substantially larger value of r
than would otherwise be possible.

We denote the allowed range size of the original alphabet K0. Unless K0

is very large, the preparatory compaction transform can be efficiently com-
puted using an auxiliary array of size K0 (which may be overlaid on I):
Positions in the array corresponding to used symbol numbers are marked,
and ordinal numbers then accumulated in the same array. The time com-
plexity is O(n + K0).

5.4. Initial Bucket Sorting. The initial sorting step is quite separate from
the rest of the algorithm and is not required to use the same sorting method
as later passes. Since this step must process all of the input in one sin-
gle sorting operation, a substantial improvement can be gained by using a
linear-time bucket sorting algorithm, instead of a comparison-based algo-
rithm that requires Ω(n log n) time.

At this stage the array I does not yet contain any data. Therefore, if the
alphabet size is at most n + 1, we can use I as an auxiliary bucketing array,

FASTER SUFFIX SORTING 13

not requiring any extra space. If the input alphabet is larger than n + 1
and can not be readily renumbered, we can not use this technique. However,
in practice, this is unusual unless n is very small, in which case there is
no need for a sophisticated sorting algorithm. (Note also that the Manber-
Myers suffix sorting algorithm and similar techniques can not function at
all if the alphabet size is larger than n + 1.)

An even more substantial improvement can be gained by combining bucket
sorting with transformation of the input alphabet as described in Section 5.3.
In this case, when choosing the value of r – the number of original symbols
to aggregate into one – we require not only that Kr − 1 can be held in
one machine word, but also that it is at most n. The resulting transformed
alphabet can be larger than the original one, but still allows bucket sorting
without allocating extra space. Thus, using only linear time preprocessing,
we allow the initial order of the suffixes to be sorted according to the first
r symbols of each suffix. This commonly takes a substantial load off the
main sorting routine.

6. Implementation and Experiments

This section describes a practical implementation of the proposed suf-
fix sorting algorithm, and an experimental comparison between this and
other suffix sorting methods.

6.1. Implementation. We describe an implementation of our algorithm
that includes the refinements of Section 5, and present source code in the C
programming language [9]. Since the details for implementation of alphabet
transformation (described in Section 5.3) and bucket sorting (described in
Section 5.4) are not central to this work, we omit the source code for the
functions that perform those operations. The full implementation, including
alphabet transformation and bucket sorting, is available in the file qsufsort.c,
which can be obtained from www.cs.lth.se/Research/Algorithms/Source/ .

The main suffix sorting routine is shown in Figure 4. The parameters
to this function are pointers to two arrays, that are to be used as the V
and I arrays of the algorithm, and integers representing n, the input size,
and the input alphabet limits k and l (see Section 5.3). When this function
is called, the input should already have been transferred to the V array,
but the alphabet not yet transformed, other than possibly with the initial
compaction described in the last two paragraphs of Section 5.3.

The suffixsort function first sets global variables that allow the arrays to
be accessed by other functions, then enters the alphabet transformation
and initial sorting phase.

The transform function called in this phase implements techniques de-
scribed in Section 5.3. It transforms the alphabet and changes the contents
of V accordingly, while maintaining the lexicographic order between suffixes:

• V [n] is set to zero, representing the $ symbol, and the previous n cells
of the V array are assigned positive integers.

• r symbols of the original alphabet are aggregated into one, where r is
the maximum integer such that Kr ≤ q, K is the smallest power of
two such that K > k − l, and q is the last parameter in the call to
transform. The value of r is kept as a global variable.

14 N. JESPER LARSSON AND KUNIHIKO SADAKANE

void suffixsort(int *x, int *p, int n, int k, int l)

{

int *pi, *pk;

int i, j, s, sl;

V=x; I=p; /* set global values.*/

if (n >= k-l) { /* if bucketing possible,*/

j=transform(V, I, n, k, l, n);

bucketsort(V, I, n, j); /* bucketsort on first r positions.*/

} else {

transform(V, I, n, k, l, INT_MAX);

for (i=0; i<=n; ++i)

I[i]=i; /* initialize I with suffix numbers.*/

h=0;

sort_split(I, n+1); /* quicksort on first r positions.*/

}

h=r; /* no of symbols aggregated by transform.*/

while (I[0] >= -n) { /* while not single combined sorted group.*/

pi=I; /* pi is first position of group.*/

sl=0; /* sl is negated length of sorted groups.*/

do {

if ((s=*pi) < 0) {

pi-=s; /* skip over sorted group.*/

sl+=s; /* add negated length to sl.*/

} else {

if (sl) {

(pi+sl)=sl; / combine sorted groups before pi.*/

sl=0;

}

pk=I+V[s]+1; /* pk-1 is end of unsorted group.*/

sort_split(pi, pk-pi);

pi=pk; /* next group.*/

}

} while (pi <= I+n);

if (sl) /* if the array ends with a sorted group.*/

(pi+sl)=sl; / combine sorted groups at end of I.*/

h=2*h; /* double sorted-depth.*/

}

for (i=0; i<=n; ++i) /* reconstruct suffix array from inverse.*/

I[V[i]]=i;

}

Figure 4. Function suffixsort. Parameters x and p should point to integer
arrays with n + 1 elements each, where the first n elements of the x array
hold a representation of the input string as nonnegative integers in the
range [l, k). On return, p points to the sorted suffix array and x to its inverse
permutation. Functions transform and bucketsort implement operations
described in Section 5.3 and Section 5.4. Function sort split is shown in
Figure 5. V , I, h, and r are global variables in the program.

The transformed alphabet is {0, . . . , j − 1} for some alphabet size j ≤ q +
1, where 0 represents the unique $ symbol and q is a parameter to the
transform function. The value returned by this function is j. (To simplify
the bucket sorting routine, our transform implementation also under some

FASTER SUFFIX SORTING 15

static void sort_split(int *p, int n)

{

int *pa, *pb, *pc, *pd, *pl, *pm, *pn;

int f, v, s, t, tmp;

define KEY(p) (V[*(p)+(h)])

define SWAP(p, q) (tmp=*(p), *(p)=*(q), *(q)=tmp)

if (n<7) {

select_sort_split(p, n); /* special sorting for smallest arrays.*/

return;

}

v=choose_pivot(p, n);

pa=pb=p; pc=pd=p+n-1;

while (1) {

while (pb<=pc && (f=KEY(pb))<=v) {

if (f==v) { SWAP(pa, pb); ++pa; }

++pb;

}

while (pc>=pb && (f=KEY(pc))>=v) {

if (f==v) { SWAP(pc, pd); --pd; }

--pc;

}

if (pb>pc) break;

SWAP(pb, pc); ++pb; --pc;

}

pn=p+n;

if ((s=pa-p)>(t=pb-pa)) s=t;

for (pl=p, pm=pb-s; s; --s, ++pl, ++pm) SWAP(pl, pm);

if ((s=pd-pc)>(t=pn-pd-1)) s=t;

for (pl=pb, pm=pn-s; s; --s, ++pl, ++pm) SWAP(pl, pm);

s=pb-pa; t=pd-pc;

if (s>0) sort_split(p, s);

update_group(p+s, p+n-t-1);

if (t>0) sort_split(p+n-t, t);

}

Figure 5. Function sort split, an adaptation of ternary-split Quicksort
of Bentley and McIlroy [2, Program 7] with group updates incorporated.
Parameters are a pointer to the beginning of a subarray and the number of
elements. Function select sort split is an alternative sorting function, used
for small subarrays. Function update group is shown in Figure 6. Function
choose pivot returns the key for one element in the subarray.

static void update_group(int *pl, int *pm)

{

int g=pm-I; /* group number.*/

V[*pl]=g; /* update group number of first position.*/

if (pl==pm) *pl=-1; /* one element, sorted group.*/

else do /* more than one element, unsorted group.*/

V[*(++pl)]=g; /* update group numbers.*/

while (pl<pm);

}

Figure 6. Function update group. Asserts that a subarray of I that was
previously part of an unsorted group should constitute a group of its own.
Parameters are pointers to the first and last position of the subarray.

16 N. JESPER LARSSON AND KUNIHIKO SADAKANE

circumstances compacts the alphabet after symbol aggregation, so that all
integers less than j occur at least once in V .)

We adapt the use of transform to the sizes of the input and the input
alphabet. If n is large enough for I to be used as a bucket array for the given
alphabet range, i.e., if n ≥ k − l, we call transform with the q parameter
set to n. This guarantees that bucketing is still possible for the transformed
alphabet. We then use bucket sorting for initialization of I through a call
to a separate function bucketsort.

If the given alphabet range is larger than n + 1 we do not use bucket
sorting, since this would require extra space. In this case, we may just as
well use the largest possible symbol aggregation, so we call the transform
function with q value int max. Then we initialize I with the numbers 0
through n, and use our main ternary-split Quicksort subroutine sort split
for initial sorting. By setting h to zero before the call to sort split, we get the
desired effect that the contents of V [i] is used as the sorting key for suffix i.

This concludes the initialization phase. The suffix array has been sorted
according to the first r symbols of each suffix, i.e., we can set h to r. I con-
tains suffix numbers for unsorted groups, and negative group length values
for sorted groups, according to the scheme described in Section 5.1. (At
this point, the sorted group length values are all −1, since the groups have
yet to be combined.)

The main while loop of the routine runs for as long as I does not consist
of a single combined sorted group of length n + 1, i.e., until the first cell
of I has got the value −(n + 1). The inner part of the loop consists of
combining sorted groups that emerged from the previous sorting pass, with
each other and with previously combined sorted groups, and refining the
order in unsorted groups through calls to the function sort split. This process
follows the description in Section 5.1 and Section 5.2.

Finally, I, now filled with negative numbers denoting lengths of sorted
sequences, is restored to the sorted suffix array from its inverse permutation,
which the algorithm has produced in V . If the application of suffix sorting is
Burrows-Wheeler transformation, this step can be replaced by an analogous
one that computes the transformed string instead.

Figure 5 shows the ternary-split Quicksort routine. The implementation
is directly based on Program 7 of Bentley and McIlroy [2] with two ex-
ceptions: the sorting method for the smallest subarrays, and the incorpo-
ration of group updates. Choice of pivot element is in a separate function,
choose pivot, for flexibility. Our implementation uses the same ninther strat-
egy as Bentley and McIlroy. Other possibilities are, for instance, using the
true median (as we assumed for guaranteed worst case performance in Sec-
tion 4) or a random choice.

Group updates are handled in the last section of the routine, between
the recursive calls, as explained in Section 5.2. This is implemented as a
separate function, shown in Figure 6.

For fast handling of very small subarrays, we use a nonrecursive sorting
routine for subarrays with less than 7 elements, implemented as a separate
function. Since group updating is difficult in insertion sorting – the common
algorithm to use in this situation – we use a variant of selection sorting that
picks out one new group at a time, left to right, by repeatedly finding all

FASTER SUFFIX SORTING 17

file contents size
maini All 1995 articles of the Japanese newspaper

Mainichi.
109 442 894

patent A collection of Japanese patent claims. 89 229 120
reuters The Reuters corpus. 27 636 766
html A collection of html files from servers in Japan. 125 595 037
calg Concatenation of the original Calgary corpus

files except pic (13 files).
2 628 406

cant Concatenation of the Canterbury corpus files
except ptt5.

2 297 568

pic A Calgary corpus file (the same as ptt5 of the
Canterbury Corpus).

513 216

ecoli The file E.coli of the large Canterbury corpus. 4 638 690
bible The file bible.txt of the large Canterbury cor-

pus.
4 047 392

world The file world192.txt of the large Canterbury
corpus.

2 473 400

aaaa64k The letter ‘a’ repeated 64× 1024 times. 65 536
aaaa2M The letter ‘a’ repeated two million times. 2 000 000

—2M The first two million bytes of the correspond-
ing file.

2 000 000

—8M The first 8191kB of the corresponding file. 8 387 584

Table 1. Input data set used for algorithm comparison.

elements with the smallest key value and moving them to the beginning of
the subarray. This is easily combined with group updating.

6.2. Experimental Results. We report suffix sorting time for various in-
puts. We use a sun Ultra 60 workstation (Ultrasparc-ii 360 MHz cpu and
2 GB primary storage) running Solaris 2.6. The programs were compiled with
the Gnu C compiler version 2.7.2.3, with option –O3 for maximum optimiza-
tion. The reported times are user times, measured with the rusage command.

As example input, we use a set of large files, listed in Table 1. The files
are chosen to demonstrate the behaviour of the programs for different kinds
of natural data as well as degeneration cases.

The programs included in the comparison are listed in Table 2. The htr2ar,
tr2ar, and bese programs were kindly supplied by Stefan Kurtz of Bielefeld
University. The first two of these use suffix trees implemented using Kurtz’s
space reduction techniques [10]. The htr2ar code originates from an appli-
cation with limited input size; it is unable to handle our largest input files.

The mcil program is the implementation by McIlroy [12], referred to in
Section 2.1 and Section 5.3. It uses a variant of the Manber-Myers algo-
rithm [11], with improvements that yield better performance than a direct
implementation of that algorithm. McIlroy’s original implementation con-
tains error checks and calculation of parameters that we regard as inputs.
These computations, which would lead to unjustly large execution times,
have been removed in our experiments. Because of McIlroy’s input require-
ments, the same input alphabet computation as for qss2 is incorporated.

18 N. JESPER LARSSON AND KUNIHIKO SADAKANE

program algorithm
htr2ar Kurtz’s suffix tree implementation with hash table representa-

tion (ihti).
tr2ar Kurtz’s suffix tree implementation with linked list representa-

tion (illi).
mcil McIlroy’s suffix sorting implementation using an improved version

of the Manber-Myers algorithm.
bese The string sorting algorithm of Bentley and Sedgewick (see Sec-

tion 2.3) with an initial bucket sorting step. Implementation by
Kurtz.

qss0 Our algorithm with input alphabet size 256.
qss1 Our algorithm with input alphabet limits k and l set according to

the input (see Section 5.3).
qss2 Our algorithm with compacted input alphabet (see Section 5.3).

Table 2. Algorithm implementations participating in the comparison.

file lcp (avg, max) htr2ar tr2ar mcil bese qss0 qss1 qss2

cant 9.0 738 8.4 15.7 24.1 3.7 4.0 4.0 4.2
bible 14.0 551 20.4 13.8 72.6 9.1 12.0 10.7 10.7
calg 14.6 1 706 12.5 11.8 43.2 5.0 5.7 5.7 5.8
ecoli 17.4 2 815 29.2 17.6 101.1 8.5 17.3 13.5 9.8
maini 20.1 5 918 — 1109.2 5 499.9 415.8 537.1 539.4 536.7
world 23.0 559 11.1 7.6 39.1 8.0 6.7 6.0 6.1
patent 41.4 8 923 — 545.7 3 663.7 398.6 390.1 385.9 392.2
reuters 50.9 4 975 — 120.3 713.4 161.6 115.0 103.6 103.3
html 606.4 99 125 — 953.2 6 450.5 3 521.3 585.0 586.1 585.9
pic 2 353.4 36 316 1.6 0.8 3.3 53.3 0.9 0.9 0.9

Table 3. Sorting times in seconds. Average and maximum lcp, longest
common prefix for adjacent suffixes in sorted order, is listed at the left for
each file. Lowest time is in bold face.

file lcp (avg, max) htr2ar tr2ar mcil bese qss0 qss1 qss2

maini8M 19.3 4 701 40.2 50.9 205.4 21.3 24.0 23.8 21.4
patent8M 38.1 2 027 39.9 33.9 160.6 29.5 25.5 25.6 26.1
reuters8M 50.3 4 967 36.7 31.0 199.0 41.7 29.0 25.9 26.5
html8M 849.6 73 344 38.8 40.7 238.2 301.6 25.4 25.4 25.9

cant2M 8.3 228 7.4 15.3 14.6 3.1 3.2 3.2 3.3
maini2M 10.0 1 032 9.3 10.7 33.0 3.5 4.1 4.1 4.2
calg2M 11.0 1 029 9.9 9.0 32.4 3.6 4.3 4.3 4.4
ecoli2M 12.9 1 345 11.7 7.1 34.2 3.1 6.0 4.7 3.5
bible2M 14.7 551 9.4 6.3 30.6 4.1 5.0 4.5 4.4
world2M 22.9 559 8.8 6.3 30.2 6.5 5.1 4.7 4.8
patent2M 31.6 1 439 9.2 7.0 29.6 5.4 4.5 4.5 4.6
reuters2M 47.1 4 967 8.6 6.3 36.4 8.1 5.0 4.6 4.7
html2M 252.1 27 110 9.0 8.9 36.9 21.0 4.0 4.0 4.1
aaaa2M 999 999.5 1 999 999 4.4 1.8 11.4 — 5.8 5.1 5.2

aaaa64k 32 767.5 65 535 0.1 0.1 0.2 92.8 0.1 0.1 0.1

Table 4. Sorting times reported analogously to Table 3, but with input
files truncated to equal lengths.

FASTER SUFFIX SORTING 19

Table 3 and Table 4 show sorting time of the algorithms, listed with
average and maximum lcp length for each file, which gives a good estimate
of the repetitiveness of the files. The files are listed in order of average lcp.
(Maximum lcp is equivalent to the longest repeated string.) Table 3 lists the
results for the full sized natural data files; Table 4 lists results for generated
and truncated files of equal length, which give normalized timing results.

The tables show that the simple, non-specialized, string sorting implemen-
tation bese is the fastest when average lcp is small, but not much faster
than the qss programs that implement our algorithm. When repeated strings
are longer, the qss programs are more efficient, and for extremely repeti-
tive input, the suffix tree implementations have an advantage. For the most
repetitive files, bese degenerates to quadratic time complexity. Since the bese
program can not handle the aaaa2M file, we include the smaller file aaaa64k
to illustrate the extremely poor behaviour of bese for this kind of data.

It is interesting to note that mcil is slower than the qss programs for all
input, even though mcil implements the Manber-Myers algorithm which is
also specialized for suffix sorting and has the same worst case time complex-
ity as our algorithm. Indeed, these experiments indicate that the Manber-
Myers algorithm performs very badly for large files, even for natural, non-
degenerate, input data. When maximum lcp is large, mcil becomes slow,
since the number of passes in this algorithm is the logarithm of maximum
lcp length, and each pass has to process the full input string. In our algo-
rithm, the speed is not much influenced by maximum lcp, because in later
passes most suffixes are already sorted and skipped.

Note that the difference between qss and mcil is fairly small for aaaa2M,
whose average and maximum lcp are both large, which causes the un-
sorted parts to shrink slowly. For ecoli on the other hand, the difference
between these algorithms is large, since average lcp is small but maxi-
mum lcp is large.

Although htr2ar is the only program that uses an algorithm with linear
worst case performance, it is not the fastest for any of the inputs. The
other suffix tree implementation, tr2ar, uses linked lists for storing edges,
which means that the input alphabet is a factor in its time complexity.
This program is slightly faster than those using our algorithm for the most
repetitive natural data file pic, and the fastest without comparison for the
generated file aaaa2M, whose input alphabet size is one.

Input alphabet compaction clearly helps when the input alphabet is small.
This is noticeable particularly for ecoli, which is in the four symbol alphabet
of dna sequences, causing qss2 to be much faster than qss0 and qss1.

Our algorithm is the fastest for files whose average lcp is neither ter-
ribly small nor large. Moreover, it exhibits robust behaviour over all the
inputs: the difference in speed between our algorithms and the fastest one
is small for all files.

7. Conclusion

Although the proposed algorithm is strongly related to that of Manber and
Myers – it requires the same amount of space, has the same asymptotic worst
case time complexity, and relies on the same suffix ordering observations –

20 N. JESPER LARSSON AND KUNIHIKO SADAKANE

our experiments clearly show that our ideas for how to reduce superfluous
processing are successful, and yield a substantially faster algorithm.

Furthermore, we have found our algorithm to outperform suffix tree im-
plementations for natural data, even for very large files, even though suffix
trees theoretically have superior asymptotic time complexity. In addition,
our algorithm requires less space than a suffix tree.

Finally, our algorithm exhibits an excellent robustness when processing
large or repetitive inputs, matched only by suffix trees. Thus, although a
general string sorting algorithm optimized for short strings may have a slight
advantage for inputs with little repetition, we assert that our algorithm is
clearly a better choice in general, since ordinary string sorting degenerates
catastrophically for some input distributions.

References

1. Bernhard Balkenhol, Stefan Kurtz, and Yuri M. Shtarkov, Modifications of the burrows
and wheeler data compression algorithm, Proceedings of the ieee Data Compression
Conference, March 1999, pp. 188–197.

2. Jon L. Bentley and M. Douglas McIlroy, Engineering a sort function, Software –
Practice and Experience 23 (1993), no. 11, 1249–1265.

3. Jon L. Bentley and Robert Sedgewick, Fast algorithms for sorting and searching
strings, Proceedings of the eighth Annual acm–siam Symposium on Discrete Algo-
rithms, January 1997, pp. 360–369.

4. Michael Burrows and David J. Wheeler, A block-sorting lossless data compression algo-
rithm, Research Report. 124, Digital Systems Research Center, Palo Alto, California,
May 1994.

5. Gaston H. Gonnet and Ricardo A. Baeza-Yates, Handbook of algorithms and data
structures, Addison-Wesley, 1991.

6. C. A.R. Hoare, Quicksort, Computer Journal 5 (1962), 10–15.
7. Richard M. Karp, Raymond E. Miller, and Arnold L. Rosenberg, Rapid identification

of repeated patterns in strings, trees and arrays, Proceedings of the 5th Annual ieee

Symposium on Foundations of Computer Science, May 1972, pp. 125–136.
8. Toru Kasai, Hiroki Arimura, and Setsou Arikawa, Virtual suffix trees: Fast compu-

tation of subword frequency using suffix arrays, Proceedings of the 1999 Winter la

Symposium, February 1999, in Japanese.
9. Brian W. Kernighan and Dennis M. Ritchie, The C programming language, second

ed., Prentice Hall, 1988.
10. Stefan Kurtz, Reducing the space requirement of suffix trees, Tech. Report 98-03, Tech-

nische Fakultät der Universität Bielefeld, Abteilung Informationstechnik, 1998.
11. Udi Manber and Gene Myers, Suffix arrays: A new method for on-line string searches,

siam Journal on Computing 22 (1993), no. 5, 935–948.
12. M. Douglas McIlroy, ssort.c, Source Code, 1997, http://cm.bell-labs.com/cm/cs/who/

doug/source.html.
13. Kunihiko Sadakane, A fast algorithm for making suffix arrays and for Burrows-

Wheeler transformation, Proceedings of the ieee Data Compression Conference,
March–April 1998, pp. 129–138.

14. Michael Schindler, bzip2 program, http site www.compressconsult.com, 1998.
15. A. Schönhage, M. Paterson, and N. Pippenger, Finding the median, Journal of Com-

puter and System Sciences 13 (1976), no. 2, 184–199.
16. Julian Seward, bzip2 program, http site www.muraroa.demon.co.uk, 1997–1999.
17. Peter Weiner, Linear pattern matching algorithms, Proceedings of the 14th Annual

ieee Symposium on Foundations of Computer Science, 1973, pp. 1–11.

